Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 19359, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-33168858

RESUMO

Prolonged high-temperature extreme events in the ocean, marine heatwaves, can have severe and long-lasting impacts on marine ecosystems, fisheries and associated services. This study applies a marine heatwave framework to analyse a global sea surface temperature product and identify the most extreme events, based on their intensity, duration and spatial extent. Many of these events have yet to be described in terms of their physical attributes, generation mechanisms, or ecological impacts. Our synthesis identifies commonalities between marine heatwave characteristics and seasonality, links to the El Niño-Southern Oscillation, triggering processes and impacts on ocean productivity. The most intense events preferentially occur in summer, when climatological oceanic mixed layers are shallow and winds are weak, but at a time preceding climatological maximum sea surface temperatures. Most subtropical extreme marine heatwaves were triggered by persistent atmospheric high-pressure systems and anomalously weak wind speeds, associated with increased insolation, and reduced ocean heat losses. Furthermore, the most extreme events tended to coincide with reduced chlorophyll-a concentration at low and mid-latitudes. Understanding the importance of the oceanic background state, local and remote drivers and the ocean productivity response from past events are critical steps toward improving predictions of future marine heatwaves and their impacts.

2.
Med J Aust ; 211(11): 490-491.e21, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722443

RESUMO

The MJA-Lancet Countdown on health and climate change was established in 2017 and produced its first Australian national assessment in 2018. It examined 41 indicators across five broad domains: climate change impacts, exposures and vulnerability; adaptation, planning and resilience for health; mitigation actions and health co-benefits; economics and finance; and public and political engagement. It found that, overall, Australia is vulnerable to the impacts of climate change on health, and that policy inaction in this regard threatens Australian lives. In this report we present the 2019 update. We track progress on health and climate change in Australia across the same five broad domains and many of the same indicators as in 2018. A number of new indicators are introduced this year, including one focused on wildfire exposure, and another on engagement in health and climate change in the corporate sector. Several of the previously reported indicators are not included this year, either due to their discontinuation by the parent project, the Lancet Countdown, or because insufficient new data were available for us to meaningfully provide an update to the indicator. In a year marked by an Australian federal election in which climate change featured prominently, we find mixed progress on health and climate change in this country. There has been progress in renewable energy generation, including substantial employment increases in this sector. There has also been some progress at state and local government level. However, there continues to be no engagement on health and climate change in the Australian federal Parliament, and Australia performs poorly across many of the indicators in comparison to other developed countries; for example, it is one of the world's largest net exporters of coal and its electricity generation from low carbon sources is low. We also find significantly increasing exposure of Australians to heatwaves and, in most states and territories, continuing elevated suicide rates at higher temperatures. We conclude that Australia remains at significant risk of declines in health due to climate change, and that substantial and sustained national action is urgently required in order to prevent this.


Assuntos
Mudança Climática , Política Ambiental , Planejamento em Saúde , Política de Saúde , Saúde , Austrália , Economia , Exposição Ambiental , Calor Extremo , Governo Federal , Financiamento da Assistência à Saúde , Humanos , Governo Local , Mosquitos Vetores , Política , Energia Renovável , Governo Estadual , Doenças Transmitidas por Vetores , Incêndios Florestais
3.
Nat Commun ; 10(1): 2624, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31201309

RESUMO

Marine heatwaves (MHWs) can cause devastating impacts to marine life. Despite the serious consequences of MHWs, our understanding of their drivers is largely based on isolated case studies rather than any systematic unifying assessment. Here we provide the first global assessment under a consistent framework by combining a confidence assessment of the historical refereed literature from 1950 to February 2016, together with the analysis of MHWs determined from daily satellite sea surface temperatures from 1982-2016, to identify the important local processes, large-scale climate modes and teleconnections that are associated with MHWs regionally. Clear patterns emerge, including coherent relationships between enhanced or suppressed MHW occurrences with the dominant climate modes across most regions of the globe - an important exception being western boundary current regions where reports of MHW events are few and ocean-climate relationships are complex. These results provide a global baseline for future MHW process and prediction studies.

4.
Nat Commun ; 9(1): 1324, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636482

RESUMO

Heatwaves are important climatic extremes in atmospheric and oceanic systems that can have devastating and long-term impacts on ecosystems, with subsequent socioeconomic consequences. Recent prominent marine heatwaves have attracted considerable scientific and public interest. Despite this, a comprehensive assessment of how these ocean temperature extremes have been changing globally is missing. Using a range of ocean temperature data including global records of daily satellite observations, daily in situ measurements and gridded monthly in situ-based data sets, we identify significant increases in marine heatwaves over the past century. We find that from 1925 to 2016, global average marine heatwave frequency and duration increased by 34% and 17%, respectively, resulting in a 54% increase in annual marine heatwave days globally. Importantly, these trends can largely be explained by increases in mean ocean temperatures, suggesting that we can expect further increases in marine heatwave days under continued global warming.

5.
Public Health Res Pract ; 28(4)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30652185

RESUMO

By definition, extreme events are rare. Socio-economic and human systems have not experienced adverse extreme events frequently enough to develop resilience, whether this be physical, economical or structural. Humans are vulnerable to extreme events because of our physiology and because we build thresholds into our socio-economic and human health systems. When these thresholds are exceeded the consequences can be devastating. This perspective will discuss changes in heat, drought and heavy rainfall extremes in the context of climate change.


Assuntos
Mudança Climática , Desastres Naturais , Austrália , Tempestades Ciclônicas , Secas , Calor Extremo , Previsões , Humanos , Desastres Naturais/economia , Floresta Úmida
6.
Nat Commun ; 8: 16101, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28706247

RESUMO

The Tasman Sea off southeast Australia exhibited its longest and most intense marine heatwave ever recorded in 2015/16. Here we report on several inter-related aspects of this event: observed characteristics, physical drivers, ecological impacts and the role of climate change. This marine heatwave lasted for 251 days reaching a maximum intensity of 2.9 °C above climatology. The anomalous warming is dominated by anomalous convergence of heat linked to the southward flowing East Australian Current. Ecosystem impacts range from new disease outbreaks in farmed shellfish, mortality of wild molluscs and out-of-range species observations. Global climate models indicate it is very likely to be that the occurrence of an extreme warming event of this duration or intensity in this region is respectively ≥330 times and ≥6.8 times as likely to be due to the influence of anthropogenic climate change. Climate projections indicate that event likelihoods will increase in the future, due to increasing anthropogenic influences.

7.
Nat Clim Chang ; 7(2): 89-91, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29599824

RESUMO

Human activity is changing Earth's climate. Now that this has been acknowledged and accepted in international negotiations, climate research needs to define its next frontiers.

8.
Sci Rep ; 6: 23418, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26996244

RESUMO

Stomatal conductance links plant water use and carbon uptake, and is a critical process for the land surface component of climate models. However, stomatal conductance schemes commonly assume that all vegetation with the same photosynthetic pathway use identical plant water use strategies whereas observations indicate otherwise. Here, we implement a new stomatal scheme derived from optimal stomatal theory and constrained by a recent global synthesis of stomatal conductance measurements from 314 species, across 56 field sites. Using this new stomatal scheme, within a global climate model, subtantially increases the intensity of future heatwaves across Northern Eurasia. This indicates that our climate model has previously been under-predicting heatwave intensity. Our results have widespread implications for other climate models, many of which do not account for differences in stomatal water-use across different plant functional types, and hence, are also likely under projecting heatwave intensity in the future.

9.
Weather Clim Extrem ; 13: 35-43, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28344929

RESUMO

A growing field of research aims to characterise the contribution of anthropogenic emissions to the likelihood of extreme weather and climate events. These analyses can be sensitive to the shapes of the tails of simulated distributions. If tails are found to be unrealistically short or long, the anthropogenic signal emerges more or less clearly, respectively, from the noise of possible weather. Here we compare the chance of daily land-surface precipitation and near-surface temperature extremes generated by three Atmospheric Global Climate Models typically used for event attribution, with distributions from six reanalysis products. The likelihoods of extremes are compared for area-averages over grid cell and regional sized spatial domains. Results suggest a bias favouring overly strong attribution estimates for hot and cold events over many regions of Africa and Australia, and a bias favouring overly weak attribution estimates over regions of North America and Asia. For rainfall, results are more sensitive to geographic location. Although the three models show similar results over many regions, they do disagree over others. Equally, results highlight the discrepancy amongst reanalyses products. This emphasises the importance of using multiple reanalysis and/or observation products, as well as multiple models in event attribution studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...